
Map2Check - Tutorial

Herbert Rocha

Rafael Menezes

Lucas Cordeiro

2018/12/21

Overview 1

Map2Check is a software verifier able to check for security properties

in C programs. It currently supports the following properties (note:

only one mode can be run at a time):

Memsafety: default mode;

Memcleanup: --memcleanup-property

Signed Integer Overflow: --check-overflow;

Reachability: -f, checks for function VERIFIER error;

Asserts: --check-asserts;

Requirements 2

Ubuntu 16.04 or greater;

Packages libc6-dev and python-minimal;

RAM requirements depends on the input program that is

being checked; 4GB should be enough in most cases.

How to use - Setup 3

Map2Check supports C and LLVM bytecode (experimental) pro-

grams as input, but some minor preparations on the input are needed

to properly use it:

Map2Check currently has no support to multi-threaded

programs.

The file extension should be: .c, .i (for C) or .bc (for

LLVM bytecode)

Make sure that your program can be compiled without any

extra file (some libc headers such as stdlib are okay) and

that it contains a main method.

If you are using a LLVM bytecode you should use the -g flag

when generating it (using clang).

How to use - command-line interface 4

1 int main() {

2 int a = __VERIFIER_nondet_int ();

3 int b = __VERIFIER_nondet_int ();

4 int c = a + b;

5

6 __VERIFIER_assert(c != 42);

7 return 0;

8 }

./map2check -t 60

--check-asserts

./input.c

How to use - Results 5

How to use - Results 6

The counterexample shows information about the program states

such as: pointer tracking, non-deterministic calls and memory allo-

cation/deallocation. From our previous example, we have

In line 2, in the main function, a nondet call with value −8

In line 3, in the main function, a nondet call with value 50

Finally, in line 6 , in the main function, a violation of the

assert statement

We can manually validate (or using other tools) this violation

by checking that −8 + 50 = 42.

Notes 7

The -t flags specifies a timeout; you should always define one

based on the input program. Map2Check iterates over two

executors: LibFuzzer and Klee, this iteration is based on the

set timeout (Libfuzzer: 20%, Klee: 80%). If no timeout is

defined, Libfuzzer will run until it does not generate any new

test case (which can take very long) or it can find an error.

To systematically explore all paths, Klee is used, but the first

executor is LibFuzzer; so sometimes a simple input program

might take too long to report that there is no property

violation.

Notes 8

Memsafety checkings are based on tracking

allocation/deallocation methods from stdlib. So make sure

your program uses it.

Map2Check functions and properties are based on SV-COMP

rules, so it may be helpful to read it

(https://sv-comp.sosy-lab.org/2019/rules.php)

Map2Check does not support VERIFIER atomic begin.

Questions, Requests and Error 9

If you have any questions, or you would like to make a request or

have found a bug, please send an e-mail to: map2check@gmail.com

Or if you want to have a look at the source code, it is available in

GitHub: https://github.com/hbgit/Map2Check/

